iT邦幫忙

2019 iT 邦幫忙鐵人賽

DAY 29
0
AI & Data

量化投資與機器學習研究系列 第 29

29.sklearn pipelines

  • 分享至 

  • xImage
  •  

FeatureUnion 跟 pipeline 真的好用,可以暴力法選出特徵設定跟模型的參數

隨意找個介紹
https://www.kaggle.com/baghern/a-deep-dive-into-sklearn-pipelines

from sklearn.base import BaseEstimator, TransformerMixin

class RollingWindow(BaseEstimator, TransformerMixin):
    def __init__(self, window):
        self.window = window
        
    def transform(self, X, y=None):
        for col in X.columns:
            data=pd.merge(data, data[col].rolling(window=self.window).agg(['sum','std','mean','max','min','median','kurt','skew']),on='date',suffixes=('','_'+col) )
        data=data.dropna(axis=1,how='all')
        data=data[self.window-1:]
        data=data.fillna(0)
        return data
    
    def fit(self, X, y=None):
        return self 

pipeline=Pipeline([
            ('Rolling',RollingWindow() ),
            ('GBR',GradientBoostingRegressor() ),
            ])   
param = { 
            'Rolling__window':[4,5,6],
            'GBR__n_estimators': [100,200,300]
         }
         
         
clf = GridSearchCV(pipeline, param, cv=5)
 
clf.fit(X_train, y_train)

大概是這樣,有空再寫詳細一點


上一篇
28.如何改善模型
下一篇
30.自動化試出最佳股市模型
系列文
量化投資與機器學習研究30
圖片
  直播研討會
圖片
{{ item.channelVendor }} {{ item.webinarstarted }} |
{{ formatDate(item.duration) }}
直播中

尚未有邦友留言

立即登入留言